Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The genus Yersinia contains three well-recognized human pathogens, including Y. enterocolitica, Y. pestis, and Y. pseudotuberculosis. Various domesticated and wild animals carry Yersinia in their intestines. Spread to individuals arises from eating food or water contaminated by infected human or animal faeces. Interaction with infected pets and domestic stock may also lead to infection. Yersinia is able to multiply at temperatures found in normal refrigerators; hence, a large number of the bacteria may be present if meat is kept without freezing. Yersinia is also rarely transmitted by blood transfusion, because it is able to multiply in stored blood products. Infection with Yersinia can cause yersiniosis, a serious bacterial infection associated with fever, abdominal pain and cramps, diarrhea, joint pain, and symptoms similar to appendicitis in older children and adults. This paper describes a novel immunosensor approach using graphene quantum dots (GQDs) as enzyme mimics in an electrochemical sensor set up to provide an efficient diagnostic method for Y. enterecolitica. The optimum assay conditions were initially determined and the developed immunosensor was subsequently used for the detection of the bacterium in milk and human serum. The GQD-immunosensor enabled the quantification of Y. enterocolitica in a wide concentration range with a high sensitivity (LODmilk = 5 cfu mL−1 and LODserum = 30 cfu mL−1) and specificity. The developed method can be used for any pathogenic bacteria detection for clinical and food samples without pre-sample treatment. Offering a very rapid, specific and sensitive detection with a label-free system, the GQD-based immunosensor can be coupled with many electrochemical biosensors.

Details

Title
Graphene Quantum Dots as Nanozymes for Electrochemical Sensing of Yersinia enterocolitica in Milk and Human Serum
Author
Sumeyra Savas 1 ; Altintas, Zeynep 2 

 National Research Institute of Electronics and Cryptology, The Scientific and Technological Research Council of Turkey (TUBITAK), Kocaeli 41470, Turkey 
 Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, Berlin 10623, Germany 
First page
2189
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548638720
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.