Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Composite materials have great potential for growth due to their excellent properties and their multiple applications. The study of the thermal properties of the new composites resulting from the combination of epoxy resin and phase change materials (PCM), as well as thickening agents and thermally conductive compounds, was the objective of this work. For this purpose, different samples were manufactured by combining epoxy resins, organic PCMs (paraffins), and aluminum particles. Several properties were analyzed: thermal behavior (by differential scanning calorimetry technique), hardness, etc. To carry out this analysis, parameters of PCM quantity and metallic particles in the composition were varied. The results showed that the epoxy resin acted as a matrix containing the rest of the components and encapsulating the PCM. The organic PCM showed reversibility when subjected to multiple cycles. The enthalpy of the organic PCM–resin compound varied linearly according to the PCM content in the sample. For the content of this material in the samples to reach up to 40%, the use of thickening agents was necessary. The use of metallic particles improved the conductivity of the composites even while maintaining a low percentage by weight of metallic particles. Thermal simulations of the composite in bottom-coating a photovoltaic panel estimated a reduction of several degrees Celsius, showing the potential use of the PCM–epoxy resin for improving the energy production of such panels.

Details

Title
Compounds with Epoxy Resins and Phase Change Materials for Storage in Solar Applications
Author
Álvarez Feijoo, Miguel Ángel 1   VIAFID ORCID Logo  ; Arce Fariña, María Elena 1   VIAFID ORCID Logo  ; Suárez-García, Andrés 1 ; González-Peña, David 2 ; Díez-Mediavilla, Montserrat 2 

 Defense University Center, 36920 Marín, Spain[email protected] (A.S.-G.) 
 University of Burgos, 09006 Burgos, Spain; [email protected] (D.G.-P.); [email protected] (M.D.-M.) 
First page
3522
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548644092
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.