Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, stability analysis of a fractional-order linear system described by the Caputo–Fabrizio (CF) derivative is studied. In order to solve the problem, character equation of the system is defined at first by using the Laplace transform. Then, some simple necessary and sufficient stability conditions and sufficient stability conditions are given which will be the basis of doing research of a fractional-order system with a CF derivative. In addition, the difference of stability domain between two linear systems described by two different fractional derivatives is also studied. Our results permit researchers to check the stability by judging the locations in the complex plane of the dynamic matrix eigenvalues of the state space.

Details

Title
Stability Analysis of a Fractional-Order Linear System Described by the Caputo–Fabrizio Derivative
Author
Li, Hong 1 ; Cheng, Jun 2   VIAFID ORCID Logo  ; Hou-Biao, Li 1   VIAFID ORCID Logo  ; Shou-Ming Zhong 1 

 School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China 
 College of Automation and Electronic Engineering, Qingdao Universtiy of Science and Technology, Qingdao 266061, China 
First page
200
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548650863
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.