It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Forecasting crop yields is becoming increasingly important under the current context in which food security needs to be ensured despite the challenges brought by climate change, an expanding world population accompanied by rising incomes, increasing soil erosion, and decreasing water resources. Temperature, radiation, water availability and other environmental conditions influence crop growth, development, and final grain yield in a complex nonlinear manner. Machine learning (ML) techniques, and deep learning (DL) methods in particular, can account for such nonlinear relations between yield and its covariates. However, they typically lack transparency and interpretability, since the way the predictions are derived is not directly evident. Yet, in the context of yield forecasting, understanding which are the underlying factors behind both a predicted loss or gain is of great relevance. Here, we explore how to benefit from the increased predictive performance of DL methods while maintaining the ability to interpret how the models achieve their results. To do so, we applied a deep neural network to multivariate time series of vegetation and meteorological data to estimate the wheat yield in the Indian Wheat Belt. Then, we visualized and analyzed the features and yield drivers learned by the model with the use of regression activation maps. The DL model outperformed other tested models (ridge regression and random forest) and facilitated the interpretation of variables and processes that lead to yield variability. The learned features were mostly related to the length of the growing season, and temperature and light conditions during this time. For example, our results showed that high yields in 2012 were associated with low temperatures accompanied by sunny conditions during the growing period. The proposed methodology can be used for other crops and regions in order to facilitate application of DL models in agriculture.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Remote Sensing and Geoinformatics Section, GFZ German Research Centre for Geosciences, Helmholtz-Centre, Potsdam, Germany
2 Image Processing Laboratory, Universitat de València, València, Spain
3 European Commission, Joint Research Centre (JRC), Ispra, Italy
4 Environment and Production Technology Division, The International Food Policy Research Institute (IFPRI), Washington, D.C., United States of America
5 Centro de Tecnologías Físicas, Universitat Politècnica de València, València, Spain