Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, Nd and As are mainly sealed into industrial pure Fe cylinders. The effect of different temperatures on the high-temperature interaction of an Nd–Fe–As ternary system is studied via X-ray diffraction, optical microscopy, and scanning electron microscopy after heat insulation for 30 h at 1173, 1223, and 1273 K. The results show that the common products under high-temperature interaction are NdAs, Fe17Nd2, and Fe. Fe12As5 is present at 1173 K, whereas Fe2As is produced at 1223 and 1273 K. The diffusion ability of Nd is weaker than that of As. Nd mainly diffuses through the Fe atomic vacancy mechanism. As mainly binds to Fe to form Fe and As compounds.

Details

Title
Study on High-Temperature Interaction Mechanism of Nd–Fe–As System
Author
Fu, Chenghui 1   VIAFID ORCID Logo  ; Huang, Run 1 ; Xie, Wenhao 1 ; Luo, Jinxiao 1 ; Li, Yulian 1 ; Zhang, Jinzhu 1 

 School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; [email protected] (C.F.); [email protected] (R.H.); ; Guizhou Province Key Laboratory of Metallurgical Engineering and Energy Process Saving, Guiyang 550025, China 
First page
3060
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548706411
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.