Full text

Turn on search term navigation

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Many structural components made of composite materials need an accurate thickness control during fabrication and/or maintenance. In this regard, various non-destructive techniques can be used for the online measuring of thickness of large components such as wings and fuselage in the aerospace industry. In this work, the capabilities of lock-in thermography technique in thickness measurement of glass fiber reinforced plastic material were investigated and a correct procedure has been proposed to ensure the best measurement accuracy. An analytical approach and several tests were carried out on a sample specimen with the aim to study the main test parameters. Finally, the limits of technique have been discussed.

Details

Title
On the Thickness Quantification of Composite Materials by Using Lock-In Thermography
Author
Palumbo, Davide  VIAFID ORCID Logo 
First page
1185
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548720413
Copyright
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.