Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Li6.3La3Zr1.65W0.35O12 (LLZO)-Li6PS5Cl (LPSC) composite electrolytes and all-solid-state cells containing LLZO-LPSC were fabricated by cold pressing at room temperature. The LPSC:LLZO ratio was varied, and the microstructure, ionic conductivity, and electrochemical performance of the corresponding composite electrolytes were investigated; the ionic conductivity of the composite electrolytes was three or four orders of magnitude higher than that of LLZO. The high conductivity of the composite electrolytes was attributed to the enhanced relative density and the rule of mixture for soft LPSC particles with high lithium-ion conductivity (~10−4 S·cm−1). The specific capacities of all-solid-state cells (ASSCs) consisting of a LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode and the composite electrolytes of LLZO:LPSC = 7:3 and 6:4 were 163 and 167 mAh·g−1, respectively, at 0.1 C and room temperature. Moreover, the charge–discharge curves of the ASSCs with the composite electrolytes revealed that a good interfacial contact was successfully formed between the NCM811 cathode and the LLZO-LPSC composite electrolyte.

Details

Title
All-Solid-State Lithium-Ion Batteries with Oxide/Sulfide Composite Electrolytes
Author
Park, Young Seon 1 ; Lee, Jae Min 1 ; Eun Jeong Yi 1 ; Ji-Woong Moon 2 ; Hwang, Haejin 1 

 Department of Materials Science & Engineering, Inha University, Incheon 22212, Korea; [email protected] (Y.S.P.); [email protected] (J.M.L.); [email protected] (E.J.Y.) 
 Battery Materials Research Center, Research Institute of Industrial Science and Technology, Pohang 37673, Korea; [email protected] 
First page
1998
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548724180
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.