Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The subject of this work was the study of processes occurring during sintering of water atomized AISI 316L austenitic stainless steel powder modified by the addition of graphite nanoparticles. The main purpose of the work was to determine the effect of modification of the AISI 316L stainless steel austenitic powder by the addition of graphite nanopowder on the sintering kinetics and oxide reduction mechanism. The phenomena occurring during the sintering process and oxide reduction mechanisms were subjected to detailed characterizations. Mixtures with two types of nanopowder with a high BET (measurement technique of the specific surface area of materials based on Brunauer–Emmett–Teller theory) specific surface area of 350 and 400 m2/g and for comparison with graphite micropowder with a poorly developed BET specific surface area of 15 m2/g were tested. The conducted thermal analysis showed that the samples made of austenitic stainless steel doped with 0.2% and 0.3% by weight graphite nanopowder with a BET specific surface area of 400 m2/g, sintered best the oxide reduction reactions, with a more intensive participation of carbon, for these samples.

Details

Title
Sintering Kinetics of Austenitic Stainless Steel AISI 316L Modified with Nanographite Particles with Highly Developed BET Specific Surface Area
Author
Kazior, Jan; Szewczyk-Nykiel, Aneta
First page
4569
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548729364
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.