Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Diamond films are advanced engineering materials for various industrial applications requiring a coating material with extremely high thermal conductivity and low electrical conductivity. An approach for the synthesis of diamond films via high-speed jet deposition of thermally activated gas has been applied. In this method, spatially separated high-speed flows of methane and hydrogen were thermally activated, and methyl and hydrogen radicals were deposited on heated molybdenum substrates. The morphology and structure of three diamond films were studied, which were synthesized at a heating power of 900, 1700, or 1800 W, methane flow rate of 10 or 30 sccm, hydrogen flow rate of 1500 or 3500 sccm, and duration of the synthesis from 1.5 to 3 h.The morphology and electronic state of the carbon on the surface and in the bulk of the obtained films were analyzed by scanning electron microscopy, Raman scattering, X-ray photoelectron, and near-edge X-ray absorption fine structure spectroscopies. The diamond micro-crystals with a thick oxidized amorphous sp2-carbon coating were grown at a heating power of 900 W and a hydrogen flow rate of 1500 sccm. The quality of the crystals was improved, and the growth rate of the diamond film was increased seven times when the heating power was 1700–1800 W and the methane and hydrogen flow rates were 30 and 3500 sccm, respectively. Defective octahedral diamond crystals of 30 μm in size with a thin sp2-carbon surface layer were synthesized on a Mo substrate heated at 1273 K for 1.5 h. When the synthesis duration was doubled, and the substrate temperature was decreased to 1073 K, the denser film with rhombic-dodecahedron diamond crystals was grown. In this case, the thinnest hydrogenated sp2-carbon coating was detected on the surface of the diamond crystals.

Details

Title
Structure of Diamond Films Grown Using High-Speed Flow of a Thermally Activated CH4-H2 Gas Mixture
Author
Fedoseeva, YuV 1   VIAFID ORCID Logo  ; Gorodetskiy, D V 2 ; Baskakova, KI 2 ; Asanov, I P 1   VIAFID ORCID Logo  ; Bulusheva, L G 1   VIAFID ORCID Logo  ; Makarova, A A 3 ; Yudin, IB 4 ; Plotnikov, MYu 4 ; Emelyanov, A A 4 ; Rebrov, A K 4 ; Okotrub, A V 1 

 Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia; Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia 
 Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia 
 Physical Chemistry, Institute of Chemistry and Biochemistry, Free University of Berlin, 14195 Berlin, Germany; [email protected] 
 Kutateladze Institute of Thermophysics, SB RAS, 1 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia 
First page
219
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548729848
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.