Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Content-Centric Networking (CCN) is one of the emerging paradigms for the future Internet, which shifts the communication paradigm from host-centric to data-centric. In CCN, contents are delivered by their unique names, and a public-key-based signature is built into data packets to verify the authenticity and integrity of the contents. To date, research has tried to accelerate the validation of the given data packets, but existing techniques were designed to improve the performance of content verification from the requester’s viewpoint. However, we need to efficiently verify the validity of data packets in each forwarding engine, since the transmission of invalid packets influences not only security but also performance, which can lead to a DDoS (Distributed Denial of Service) attack on CCN. For example, an adversary can inject a number of meaningless packets into CCN to consume the forwarding engines’ cache and network bandwidth. In this paper, a novel authentication architecture is introduced, which can support faster forwarding by accelerating the performance of data validation in forwarding engines. Since all forwarding engines verify data packets, our authentication architecture can eliminate invalid packets before they are injected into other CCN nodes. The architecture utilizes public-key based authentication algorithms to support public verifiability and non-repudiation, but a novel technique is proposed in this paper to reduce the overhead from using PKI for verifying public keys used by forwarding engines and end-users in the architecture. The main merit of this work is in improving the performance of data-forwarding in CCN regardless of the underlying public-key validation mechanism, such as PKI, by reducing the number of accesses to the mechanism. Differently from existing approaches that forgive some useful features of the Naive CCN for higher performance, the proposed technique is the only architecture which can support all useful features given by the Naive CCN.

Details

Title
Faster Data Forwarding in Content-Centric Network via Overlaid Packet Authentication Architecture
Author
Taek-Young, Youn 1   VIAFID ORCID Logo  ; Kim, Joongheon 2   VIAFID ORCID Logo  ; Mohaisen, David 3 ; Seog Chung Seo 4   VIAFID ORCID Logo 

 Department of Industrial Security, Dankook University, Gyeonggi-do 16889, Korea; [email protected] 
 School of Electrical Engineering, Korea University, Seoul 02841, Korea; [email protected] 
 Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA; [email protected] 
 Department of Financial Information Security, Kookmin University, Seoul 02707, Korea 
First page
8746
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548734137
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.