Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This article presents the results of theoretical–experimental testing of the process of rotational compression of hollow stepped shafts. The advantages of the technology and the potential area of its application were discussed. Further on, the limits of the rotational compression technology, preventing the manufacturing of high-quality products, were presented. The research was conducted on the basis of numerical modelling using the finite element method in Simufact Forming, as well as the results of experimental tests performed in a forging machine for rotational compression. On the basis of the results obtained, it can be stated that the process of rotational compression of hollow stepped shafts can be hindered by the following phenomena: uncontrolled slip, deformation of the semi-finished product wall, twisting of the formed steps, material cracking, and deformation of the cross-section of the formed steps. The possibility of those hindrances occurring depends heavily on the assumed technological parameters of the process. For this reason, knowledge of the cause of occurrence of those limitations is vital for the development of the technology and the choice of the process parameters.

Details

Title
Limits of the Process of Rotational Compression of Hollow Stepped Shafts
Author
Tomczak, Janusz  VIAFID ORCID Logo  ; Pater, Zbigniew  VIAFID ORCID Logo 
First page
3049
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548911025
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.