Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Previous studies have shown that accumulation of advanced glycation end products (AGEs) can be the cause of diabetic nephropathy (DN) in diabetic patients. Dihydrochalcone 3′-O-β-d-glucopyranosyl α,4,2′,4′,6′-pentahydroxy–dihydrochalcone (1) is a powerful antiglycation compound previously isolated from Eysenhardtia polystachya. The aim was to investigate whether (1) was able to protect against diabetic nephropathy in streptozotocin (STZ)-induced diabetic mice, which displayed renal dysfunction markers such as body weight, creatinine, uric acid, serum urea, total urinary protein, and urea nitrogen in the blood (BUN). In addition, pathological changes were evaluated including glycated hemoglobin (HbA1c), advanced glycation end products (AGEs) in the kidney, as well as in circulation level and pro-inflammatory markers ICAM-1 levels in diabetic mice. After 5 weeks, these elevated markers of dihydrochalcone treatment (25, 50 and 100 mg/kg) were significantly (p < 0.05) attenuated. In addition, they ameliorate the indices of renal inflammation as indicated by ICAM-1 markers. The kidney and circulatory AGEs levels in diabetic mice were significantly (p < 0.05) attenuated by (1) treatment. Histological analysis of kidney tissues showed an important recovery in its structure compared with the diabetic group. It was found that the compound (1) attenuated the renal damage in diabetic mice by inhibiting AGEs formation.

Details

Title
3′-O-β-d-glucopyranosyl-α,4,2′,4′,6′-pentahydroxy-dihydrochalcone, from Bark of Eysenhardtia polystachya Prevents Diabetic Nephropathy via Inhibiting Protein Glycation in STZ-Nicotinamide Induced Diabetic Mice
Author
Pérez Gutierrez, Rosa Martha 1 ; Abraham Heriberto García Campoy 1   VIAFID ORCID Logo  ; Paredes Carrera, Silvia Patricia 2 ; Alethia Muñiz Ramirez 3   VIAFID ORCID Logo  ; Mota Flores, José Maria 1 ; Sergio Odin Flores Valle 4 

 Natural Products Research Laboratory, Higher School of Chemical Engineering and Extractive Industries, National Polytechnic Institute, Av. Instituto Politécnico Nacional S/N, Unidad Profesional Adolfo Lopez Mateos, Ciudad de México CP 07708, Mexico 
 Sustainable Nanomaterials Laboratory, Higher School of Chemical Engineering and Extractive Industries, National Polytechnic Institute (IPN) Professional Unit Adolfo Lopez Mateos, S/N Av. Instituto Politécnico Nacional, Ciudad de México CP 07708, Mexico 
 CONACYT/IPICYT-CIIDZA, Camino a la Presa de San José 2055, Col. Lomas 4 Sección, San Luis Potosí CP 78216, Mexico 
 Green Chemistry Research Laboratory, School of Chemical Engineering and Extractive Industries, National Polytechnic Institute, Av. Instituto Politécnico Nacional S/N, Unidad Profesional Adolfo Lopez Mateos, Ciudad de México CP 07708, Mexico 
First page
1214
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548949598
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.