Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Particulate methane monooxygenase (pMMO) is a characteristic membrane-bound metalloenzyme of methane-oxidizing bacteria that can catalyze the bioconversion of methane to methanol. However, in order to achieve pMMO-based continuous methane-to-methanol bioconversion, the problems of reducing power in vitro regeneration and pMMO stability need to be overcome. Methanobactin (Mb) is a small copper-chelating molecule that functions not only as electron carrier for pMMO catalysis and pMMO protector against oxygen radicals, but also as an agent for copper acquisition and uptake. In order to improve the activity and stability of pMMO, methanobactin–Cu (Mb–Cu)-modified gold nanoparticle (AuNP)–pMMO nanobiohybrids were straightforwardly synthesized via in situ reduction of HAuCl4 to AuNPs in a membrane fraction before further association with Mb–Cu. Mb–Cu modification can greatly improve the activity and stability of pMMO in the AuNP–pMMO nanobiohybrids. It is shown that the Mb–Cu-modified AuNP–pMMO nanobiohybrids can persistently catalyze the conversion of methane to methanol with hydroquinone as electron donor. The artificial heterogeneous nanobiohybrids exhibited excellent reusability and reproducibility in three cycles of catalysis, and they provide a model for achieving hydroquinone-driven conversion of methane to methanol.

Details

Title
Hybridization of Particulate Methane Monooxygenase by Methanobactin-Modified AuNPs
Author
Jia-Ying, Xin 1 ; Li-Rui, Sun 2 ; Hui-Ying, Lin 2 ; Zhang, Shuai 2 ; Chun-Gu, Xia 3 

 Key Laboratory of Food Science and Engineering, Harbin University of Commerce, Harbin 150076, China; State Key Laboratory of Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China 
 Key Laboratory of Food Science and Engineering, Harbin University of Commerce, Harbin 150076, China 
 State Key Laboratory of Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China 
First page
4027
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548951961
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.