Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Understanding the stability limit of crystalline materials under variable tensile stress conditions is of capital interest for technological applications. In this study, we present results from first-principles density functional theory calculations that quantitatively account for the response of selected covalent and layered materials to general stress conditions. In particular, we have evaluated the ideal strength along the main crystallographic directions of 3C and 2H polytypes of SiC, hexagonal ABA stacking of graphite and 2H-MoS2. Transverse superimposed stress on the tensile stress was taken into account in order to evaluate how the critical strength is affected by these multi-load conditions. In general, increasing transverse stress from negative to positive values leads to the expected decreasing of the critical strength. Few exceptions found in the compressive stress region correlate with the trends in the density of bonds along the directions with the unexpected behavior. In addition, we propose a modified spinodal equation of state able to accurately describe the calculated stress–strain curves. This analytical function is of general use and can also be applied to experimental data anticipating critical strengths and strain values, and for providing information on the energy stored in tensile stress processes.

Details

Title
Computational Modeling of Tensile Stress Effects on the Structure and Stability of Prototypical Covalent and Layered Materials
Author
Chorfi, Hocine 1 ; Lobato, Álvaro 2 ; Boudjada, Fahima 3 ; Salvadó, Miguel A 4 ; Franco, Ruth 4 ; Baonza, Valentín G 5   VIAFID ORCID Logo  ; Recio, J Manuel 4 

 MALTA-Consolider Team and Departamento de Química Física y Analítica, Universidad de Oviedo, E-33006 Oviedo, Spain; [email protected] (H.C.); [email protected] (Á.L.); [email protected] (M.A.S.); [email protected] (R.F.); Physics Department, University of Constantine 1, Constantine 25017, Algeria; [email protected] 
 MALTA-Consolider Team and Departamento de Química Física y Analítica, Universidad de Oviedo, E-33006 Oviedo, Spain; [email protected] (H.C.); [email protected] (Á.L.); [email protected] (M.A.S.); [email protected] (R.F.); MALTA-Consolider Team and Departamento de Química Física, Universidad Complutense de Madrid, E-28040 Madrid, Spain; [email protected] 
 Physics Department, University of Constantine 1, Constantine 25017, Algeria; [email protected]; Institut Lumiere Matiere, Université Claude Bernard Lyon 1, CNRS, F-69622 Villeurbanne, France 
 MALTA-Consolider Team and Departamento de Química Física y Analítica, Universidad de Oviedo, E-33006 Oviedo, Spain; [email protected] (H.C.); [email protected] (Á.L.); [email protected] (M.A.S.); [email protected] (R.F.) 
 MALTA-Consolider Team and Departamento de Química Física, Universidad Complutense de Madrid, E-28040 Madrid, Spain; [email protected]; Instituto de Geociencias, IGEO, CSIC-UCM, E-28040 Madrid, Spain 
First page
1483
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548965283
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.