Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Porcine sperm motility was assessed via resazurin reduction color change in sperm cells using a novel paper-based assay of our own design. We applied mixtures of resazurin solution and porcine semen onto hydrophilic test circles on our paper-based device and investigated the resulting reduction reaction expressed as red and blue color intensity (RBCI). We quantified this reaction using a blue/pink color ratio from our 8 × 3 = 24 bit RGB color image. To examine enzymatic reactivity in sperm cells, we used two inhibitors: 3-Nitropropanoic acid (3-NPA) and 3-Bromopyruvic acid (3-BP). 3-NPA inhibits the citric acid cycle and electron transfer reaction in mitochondria, but did not strongly reduce sperm motility in our tests. 3-BP decreases reactivity of both mitochondrial electron transfer and glycolytic enzymes in cytosol, which significantly lowers porcine sperm motility. RBCIs of 3-NPA- and 3-BP-treated samples were significantly lower compared to our untreated control (p < 0.025). Based on these results, we feel that resazurin can be used to estimate the amount of reductants with and without inhibitor treatment. For continued research assessing the molecular mechanisms of resazurin reduction in porcine sperm, a combination assay using two or more redox indicators (e.g., resazurin and Thiazolyl Blue Tetrazolium Bromide (MTT)) embedded into our paper-based device could further our understanding of sperm cell bioenergetics.

Details

Title
Paper-Based Resazurin Assay of Inhibitor-Treated Porcine Sperm
Author
Matsuura, Koji 1 ; Wang, Wen-Hsin 2 ; Ching, Alex 3 ; Chen, Yu 4 ; Chao-Min, Cheng 2 

 Department of Biomedical Engineering, Faculty of Engineering, Okayama University of Science, 1-1 Ridai-Cho Kita-Ku, Okayama 700-0005, Japan 
 Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan 
 Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; St. Mark’s School of Texas, Dallas, TX 75230, USA 
 Department of Urology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 33302, Taiwan 
First page
495
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2549005995
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.