Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Components subject to rolling contact fatigue, such as gears and rolling bearings, are among the fundamental machine elements in mechanical and vehicle engineering. Rolling bearings are generally not designed to be fatigue-resistant, as the necessary oversizing is not technically and economically marketable. In order to improve the load-bearing capacity, resource efficiency and application possibilities of rolling bearings and other possible multi-material solid components, a new process chain was developed at Leibniz University Hannover as a part of the Collaborative Research Centre 1153 “Tailored Forming”. Semi-finished products, already joined before the forming process, are used here to allow a further optimisation of joint quality by forming and finishing. In this paper, a plasma-powder-deposition welding process is presented, which enables precise material deposition and control of the welding depth. For this study, bearing washers (serving as rolling bearing raceways) of a cylindrical roller thrust bearing, similar to type 81212 with a multi-layer structure, were manufactured. A previously non-weldable high-performance material, steel AISI 5140, was used as the cladding layer. Depending on the degree of forming, grain-refinement within the welded material was achieved by thermo-mechanical treatment of the joining zone during the forming process. This grain-refinements lead to an improvement of the mechanical properties and thus, to a higher lifetime for washers of an axial cylindrical roller bearing, which were examined as an exemplary component on a fatigue test bench. To evaluate the bearing washers, the results of the bearing tests were compared with industrial bearings and deposition welded axial-bearing washers without subsequent forming. In addition, the bearing washers were analysed micro-tribologically and by scanning acoustic microscopy both after welding and after the forming process. Nano-scratch tests were carried out on the bearing washers to analyse the layer properties. Together with the results of additional microscopic images of the surface and cross-sections, the causes of failure due to fatigue and wear were identified.

Details

Title
Manufacturing and Evaluation of Multi-Material Axial-Bearing Washers by Tailored Forming
Author
Behrens, Bernd-Arno 1 ; Chugreev, Alexander 1 ; Matthias, Tim 1 ; Poll, Gerhard 2 ; Pape, Florian 2 ; Coors, Timm 2 ; Hassel, Thomas 3 ; Maier, Hans Jürgen 3 ; Mildebrath, Maximilian 3 

 Institute of Forming Technology and Machines, Leibniz University Hannover, 30823 Garbsen, Germany 
 Institute of Machine Design and Tribology, Leibniz University Hannover, 30167 Hanover, Germany 
 Institute of Materials Science, Leibniz University Hannover, 30823 Garbsen, Germany 
First page
232
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2549007579
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.