Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The three-dimensional geometry of a micromixer with an asymmetrical split-and-recombine mechanism was optimized to enhance the fluid-mixing capability at a Reynolds number of 20. Single and multi-objective optimizations were carried out by using particle swarm optimization and a genetic algorithm on a modeled surrogate surface. Surrogate modeling was performed using the computational results for the mixing. Mixing and flow analyses were carried out by solving the convection–diffusion equation in combination with the three-dimensional continuity and momentum equations. The optimization was carried out with two design variables related to dimensionless geometric parameters. The mixing effectiveness was chosen as the objective function for the single-objective optimization, and the pressure drop and mixing index at the outlet were chosen for the multi-objective optimization. The sampling points in the design space were determined using a design of experiment technique called Latin hypercube sampling. The surrogates for the objective functions were developed using a Kriging model. The single-objective optimization resulted in 58.9% enhancement of the mixing effectiveness compared to the reference design. The multi-objective optimization provided Pareto-optimal solutions that showed a maximum increase of 48.5% in the mixing index and a maximum decrease of 55.0% in the pressure drop in comparison to the reference design.

Details

Title
Single and Multi-Objective Optimization of a Three-Dimensional Unbalanced Split-and-Recombine Micromixer
Author
Raza, Wasim  VIAFID ORCID Logo  ; Sang-Bum Ma
First page
711
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2549023093
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.