Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The multivesicular liposome (MVL) provides a potential delivery approach to avoid the destruction of the structure of drugs by digestive enzymes of the oral cavity and gastrointestinal system. It also serves as a sustained-release drug delivery system. In this study, we aimed to incorporate a water-soluble substance into MVLs to enhance sustained release, prevent the destruction of drugs, and to expound the function of different components and their mechanism. MVLs were prepared using the spherical packing model. The morphology, structure, size distribution, and zeta potential of MVLs were examined using an optical microscope (OM), confocal microscopy (CLSM), transmission electron cryomicroscope (cryo-EM) micrograph, a Master Sizer 2000, and a zeta sizer, respectively. The digestion experiment was conducted using a bionic mouse digestive system model in vitro. An in vitro release and releasing mechanism were investigated using a dialysis method. The average particle size, polydispersity index, zeta potential, and encapsulation efficiency are 47.6 nm, 1.880, −70.5 ± 2.88 mV, and 82.00 ± 0.25%, respectively. The studies on the controlled release in vitro shows that MVLs have excellent controlled release and outstanding thermal stability. The angiotensin I-converting enzyme (ACE) inhibitory activity of ACE-inhibitory peptide (AP)-MVLs decreased only 2.84% after oral administration, and ACE inhibitory activity decreased by 5.03% after passing through the stomach. Therefore, it could serve as a promising sustained-release drug delivery system.

Details

Title
Multivesicular Liposomes for the Sustained Release of Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides from Peanuts: Design, Characterization, and In Vitro Evaluation
Author
Li, Ning 1   VIAFID ORCID Logo  ; Shi, Aimin 2 ; Wang, Qiang 2 ; Zhang, Guoquan 3 

 College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; [email protected]; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, P.O. Box 5109, Beijing 100193, China; [email protected] 
 Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, P.O. Box 5109, Beijing 100193, China; [email protected] 
 College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; [email protected] 
First page
1746
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2549027321
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.