Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, a series of selective butyrylcholinesterase (BChE) inhibitors was designed and synthesized from the structural optimization of hit 1, a 4-((3,4-dihydroisoquinolin-2(1H)-yl)methyl)benzoic acid derivative identified by virtual screening our compound library. The in vitro enzyme assay results showed that compounds 9 ((4-((3,4-dihydroisoquinolin-2(1H)-yl)methyl)phenyl)(pyrrolidin-1-yl)methanone) and 23 (N-(2-bromophenyl)-4-((3,4-dihydroisoquinolin-2(1H)-yl)methyl)benzamide) displayed improved BChE inhibitory activity and good selectivity towards BChE versus AChE. Their binding modes were probed by molecular docking and further validated by molecular dynamics simulation. Kinetic analysis together with molecular modeling studies suggested that these derivatives could target both the catalytic active site (CAS) and peripheral anionic site (PAS) of BChE. In addition, the selected compounds 9 and 23 displayed anti-Aβ1–42 aggregation activity in a dose-dependent manner, and they did not show obvious cytotoxicity towards SH-SY5Y neuroblastoma cells. Also, both compounds showed significantly protective activity against Aβ1-42-induced toxicity in a SH-SY5Y cell model. The present results provided a new valuable chemical template for the development of selective BChE inhibitors.

Details

Title
Discovery of New Selective Butyrylcholinesterase (BChE) Inhibitors with Anti-Aβ Aggregation Activity: Structure-Based Virtual Screening, Hit Optimization and Biological Evaluation
Author
Cheng-Shi, Jiang 1   VIAFID ORCID Logo  ; Yong-Xi, Ge 1 ; Cheng, Zhi-Qiang 1 ; Yin-Yin, Wang 1 ; Hong-Rui, Tao 2 ; Zhu, Kongkai 1 ; Zhang, Hua 1   VIAFID ORCID Logo 

 School of Biological Science and Technology, University of Jinan, Jinan 250022, China 
 School of Biological Science and Technology, University of Jinan, Jinan 250022, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Meteria Medica, Chinese Academy of Sciences, Shanghai 201203, China 
First page
2568
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2549037332
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.