Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The advantages of peritoneal dialysis (PD) over hemodialysis (HD) are well-documented. Notwithstanding, only a small proportion of patients with end-stage renal disease (ESRD) are managed with PD. This may be related to the high glucose load that PD solutions in current use have on the patient. The effects of such excess glucose include the relatively early limitation of the ultrafiltration capacity of the peritoneal membrane, and the metabolic effects associated with hyperglycemia, e.g., decreased insulin sensitivity. This article describes the advantages that may be realized by the glucose-sparing effects of substituting part of the glucose load with other osmotically active metabolites, particularly L-carnitine. The latter is anticipated to have metabolic advantages of its own, especially as in PD patients, high plasma concentrations can be achieved in the absence of renal clearance. Besides its better biocompatibility, L-carnitine demonstrates anti-anemia action due to its effects on erythropoiesis, and positive effects on the longevity and deformability of erythrocytes. Observations from our trials on the use of carnitine-enriched PD solutions have demonstrated the effectiveness of L-carnitine as an efficient osmolyte in PD, and its favorable effect on the insulin sensitivity of the patients. The significance of these findings for future developments in the use of PD in the management of patients with ESRD is discussed.

Details

Title
Current Opinion on Usage of L-Carnitine in End-Stage Renal Disease Patients on Peritoneal Dialysis
Author
Bonomini, Mario 1 ; Lorenzo Di Liberato 1 ; Zammit, Victor 2 ; Arduini, Arduino 3 

 Department of Medicine, Section of Nephrology and Dialysis, G. d’Annunzio University, SS. Annunziata Hospital, 66100 Chieti, Italy 
 Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK 
 Department of Research and Development, CoreQuest Sagl, Tecnopolo, 6934 Bioggio, Switzerland 
First page
3449
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2549045099
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.