Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cane molasses is one of the main by-products of sugar refineries, which is rich in sucrose. In this work, low-cost cane molasses was introduced as an alternative substrate for isomaltulose production. Using the engineered Yarrowia lipolytica, the isomaltulose production reached the highest (102.6 g L−1) at flask level with pretreated cane molasses of 350 g L−1 and corn steep liquor of 1.0 g L−1. During fed-batch fermentation, the maximal isomaltulose concentration (161.2 g L−1) was achieved with 0.96 g g−1 yield within 80 h. Simultaneously, monosaccharides were completely depleted, harvesting the high isomaltulose purity (97.4%) and high lipid level (12.2 g L−1). Additionally, the lipids comprised of 94.29% C16 and C18 fatty acids, were proved suitable for biodiesel production. Therefore, the bioprocess employed using cane molasses in this study was low-cost and eco-friendly for high-purity isomaltulose production, coupling with valuable lipids.

Details

Title
Efficient Conversion of Cane Molasses Towards High-Purity Isomaltulose and Cellular Lipid Using an Engineered Yarrowia lipolytica Strain in Fed-Batch Fermentation
Author
Zhi-Peng, Wang 1 ; Qin-Qing, Wang 2 ; Liu, Song 3 ; Xiao-Fang, Liu 1 ; Xin-Jun, Yu 4 ; Yun-Lin, Jiang 5 

 Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China 
 Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China 
 Development & Reform Bureau, West Coast New Area, Qingdao 266000, Shandong, China 
 Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China 
 Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China 
First page
1228
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2549055531
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.