It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Accurate wind resource assessments are crucial in the development of wind farm projects. However, it is common practice to estimate the wind yield over the next 20 years from short-term measurements and reanalysis data of the past 20 years, even though wind climatology is expected to change under the future climate. The present work examines future changes in wind power output over Europe using an ensemble of ESMs. The power output is calculated using the entire wind speed PDF and a non-constant power conversion coefficient. Based on this method, the ESM ensemble projects changes in near-future power outputs with a spatially varying magnitude between −12% and 8%. The most extreme changes occur over the Mediterranean region. For the first time, the sensitivity of these future change in power output to the type of wind turbine is also investigated. The analysis reveals that the projected wind power changes may vary in up to half of their magnitude, depending on the type of turbine and region of interest. As such, we recommend that wind industries fully account for projected near-future changes in wind power output by taking them into account as a well-defined loss/gain and uncertainty when estimating the yield of a future wind farm.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 KU Leuven, Department of Earth and Environmental Sciences, Celestijnenlaan 200 E, B-3000 Leuven, Belgium; Storm, Katwilgweg 2, B-2050 Antwerpen, Belgium; Author to whom any correspondence should be addressed.
2 KU Leuven, Department of Earth and Environmental Sciences, Celestijnenlaan 200 E, B-3000 Leuven, Belgium
3 KU Leuven, Department of Earth and Environmental Sciences, Celestijnenlaan 200 E, B-3000 Leuven, Belgium; Ghent University, Laboratory of Hydrology and Water Management, B-9000 Ghent, Belgium