It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The Southeast Asian region had been subjected to a drastic reduction in air quality from the biomass burnings that occurred in 2013 and 2015. The smoke from the biomass burnings covered the entire region including Brunei, Indonesia, Malaysia, Singapore and Thailand, with haze particulate matter (PM) reducing the air quality to hazardous levels. Here we report a comprehensive size–composition–morphology characterization of the PM collected from an urban site in Singapore during the two haze events. The two haze events were a result of biomass burning and occurred in two different geographical source regions. We show the similarities and variations of particle size distribution during hazy and clear days during the two haze events. Sub-micron particles (<1 μm) dominate (∼50%) the aerosols in the atmosphere during clear and hazy days. Using electron microscopy, we also categorize the PM, namely soot, organic–inorganic clusters and hybrid particles. The composition and morphology were similar in both the haze events. The majority of the PM is composed of carbon (∼51%) and other elements pertaining to the earth’s crust. The complexity of the mixing state of the PM is highlighted and the role of the capture mode is addressed. We also present the morphological characterization of all the classified PM. The box counting method is used to determine the fractal dimensions of the PM, and the dimensionality varied for every classification from 1.79 to 1.88. We also report the complexities of particles and inconsistencies in the existing approaches to understand them.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Energy Research Institute @ NTU (ERI@N), 1 CleanTech Loop, #06-04, 637141, Singapore; Author to whom any correspondence should be addressed.
2 Energy Research Institute @ NTU (ERI@N), 1 CleanTech Loop, #06-04, 637141, Singapore
3 School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, Nanyang Avenue, 639798, Singapore