It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this study, the effects of cattle grazing intensity on soil nitrous oxide (N2O) fluxes were examined in the Hulunber meadow steppe of north-eastern China. Six stocking-rate treatments (0, 0.23, 0.34, 0.46, 0.69, and 0.92 AU ha−1) with three replicates were established, and observations were conducted from 2010 to 2014. Our results showed that substantial temporal fluctuations in N2O flux occurred amongst the different grazing intensities, with peak N2O fluxes after natural rainfall. Grazing had a long-term effect on the soil N2O flux in the grasslands. After 4–5 years of grazing, the N2O fluxes under increased levels of grazing intensity began to decrease significantly by 31.4%–60.2% in 2013 and 32.5%–50.5% in 2014 compared to the non-grazing treatment. We observed a significant negative linear relationship between the soil N2O fluxes and grazing intensity for the five-year mean. The soil N2O flux was significantly affected each year in all of the treatments. Over the five years, the temporal coefficient of variation (CVs) of the soil N2O flux generally declined significantly with increasing grazing intensity. The soil N2O emission rate was significantly positively correlated with soil moisture (SM), soil available phosphorus (SAP), soil \({{{\rm{NH}}}_{4}}^{+}-N,\) soil \({{{\rm{NO}}}_{3}}^{-}-N,\) above-ground biomass (AGB), plant ground cover and height and was negatively correlated with total soil nitrogen (TN). Stepwise regressions showed that the N2O flux was primarily explained by SM, plant height, TN, soil pH, and soil \({{{\rm{NH}}}_{4}}^{+}-N.\) Using structural equation modelling, we show that grazing significantly directly influenced the plant community and the soil environment, which then influenced the soil N2O fluxes. Our findings provide an important reference for better understanding of the mechanisms and identifying the pathways of grazing effects on soil N2O emission rates, and the key drivers plant community and soil environment within the nitrogen cycle that are mostly likely to affect N2O emissions in the Inner Mongolian meadow steppes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, People’s Republic of China
2 Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB, UK