Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Replicative lifespan (RLS) of the budding yeast is the number of mother cell divisions until senescence and is instrumental to understanding mechanisms of cellular aging. Recent research has shown that replicative aging is heterogeneous, which argues for mixture modeling. The mixture model is a statistical method to infer subpopulations of the heterogeneous population. Mixture modeling is a relatively underdeveloped area in the study of cellular aging. There is no open access software currently available that assists extensive comparison among mixture modeling methods. To address these needs, we developed an R package called fitmix that facilitates the computation of well-known distributions utilized for RLS data and other lifetime datasets. This package can generate a group of functions for the estimation of probability distributions and simulation of random observations from well-known finite mixture models including Gompertz, Log-logistic, Log-normal, and Weibull models. To estimate and compute the maximum likelihood estimates of the model parameters, the Expectation–Maximization (EM) algorithm is employed.

Details

Title
Fitmix: An R Package for Mixture Modeling of the Budding Yeast S. cerevisiae Replicative Lifespan (RLS) Distributions
Author
Güven, Emine 1 ; Qin, Hong 2 

 Department of Biomedical Engineering, Engineering Faculty, Düzce University, Düzce 81620, Turkey 
 Department of Computer Science and Engineering, SimCenter, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA; [email protected]; Department of Biology, Geology and Environmental Science, SimCenter, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA 
First page
6114
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2549262842
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.