Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Semiconductor equipment consists of a complex system in which numerous components are organically connected and controlled by many controllers. EventLog records all the information available during system processes. Because the EventLog records system runtime information so developers and engineers can understand system behavior and identify possible problems, it is essential for engineers to troubleshoot and maintain it. However, because the EventLog is text-based, complex to view, and stores a large quantity of information, the file size is very large. For long processes, the log file comprises several files, and engineers must look through many files, which makes it difficult to find the cause of the problem and therefore, a long time is required for the analysis. In addition, if the file size of the EventLog becomes large, the EventLog cannot be saved for a prolonged period because it uses a large amount of hard disk space on the CTC computer. In this paper, we propose a method to reduce the size of existing text-based log files. Our proposed method saves and visualizes text-based EventLogs in DB, making it easier to approach problems than the existing text-based analysis. We will confirm the possibility and propose a method that makes it easier for engineers to analyze log files.

Details

Title
An Efficient Analytical Approach to Visualize Text-Based Event Logs for Semiconductor Equipment
Author
Lee, Gunwoo  VIAFID ORCID Logo 
First page
5944
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2549265978
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.