It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Mangrove soils have been recognized as sources of greenhouse gases, but the atmospheric fluxes are poorly characterized, and their adverse warming effect has rarely been considered with respect to the potential contribution of mangrove wetlands to climate change mitigation. The current study balanced the warming effect of soil greenhouse gas emissions with the plant carbon dioxide (CO2) sequestration rate derived from the plants’ net primary production in a productive mangrove wetland in South China to assess the role of mangrove wetlands in reducing the atmospheric warming effect. Soil characteristics were also studied in the summer to examine their relationships with gas fluxes. The soil to atmosphere fluxes of nitrous oxide (N2O), methane (CH4) and CO2 ranged from −1.6 to 50.0 μg m−2 h−1, from −1.4 to 5360.1 μg m−2 h−1 and from −31 to 512 mg m−2 h−1, respectively, which indicated that the mangrove soils act as sources of greenhouse gases in this area. The gas fluxes were higher in summer than in the cold seasons and were variable across mangrove sites. Gas fluxes in summer were positively correlated with the soil organic carbon, total nitrogen, and ammonia contents. The mangrove plants sequestered a considerable amount of atmospheric CO2 at rates varying from 3652 to 7420 g CO2 m−2 yr−1. The ecosystem acted as a source of CH4 and N2O gases but was a more intense CO2 sink. However, the warming effect of soil gas emissions accounted for 9.3–32.7% of the plant CO2 sequestration rate, partially reducing the benefit of mangrove plants, and the two trace gases comprised 9.7–33.2% of the total warming effect. We therefore propose that an assessment of the reduction of atmospheric warming effects by a mangrove ecosystem should consider both soil greenhouse gas emissions and plant CO2 sequestration.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian, 361005, People’s Republic of China
2 Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
3 Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, People’s Republic of China