Abstract

Mangrove soils have been recognized as sources of greenhouse gases, but the atmospheric fluxes are poorly characterized, and their adverse warming effect has rarely been considered with respect to the potential contribution of mangrove wetlands to climate change mitigation. The current study balanced the warming effect of soil greenhouse gas emissions with the plant carbon dioxide (CO2) sequestration rate derived from the plants’ net primary production in a productive mangrove wetland in South China to assess the role of mangrove wetlands in reducing the atmospheric warming effect. Soil characteristics were also studied in the summer to examine their relationships with gas fluxes. The soil to atmosphere fluxes of nitrous oxide (N2O), methane (CH4) and CO2 ranged from −1.6 to 50.0 μg m−2 h−1, from −1.4 to 5360.1 μg m−2 h−1 and from −31 to 512 mg m−2 h−1, respectively, which indicated that the mangrove soils act as sources of greenhouse gases in this area. The gas fluxes were higher in summer than in the cold seasons and were variable across mangrove sites. Gas fluxes in summer were positively correlated with the soil organic carbon, total nitrogen, and ammonia contents. The mangrove plants sequestered a considerable amount of atmospheric CO2 at rates varying from 3652 to 7420 g CO2 m−2 yr−1. The ecosystem acted as a source of CH4 and N2O gases but was a more intense CO2 sink. However, the warming effect of soil gas emissions accounted for 9.3–32.7% of the plant CO2 sequestration rate, partially reducing the benefit of mangrove plants, and the two trace gases comprised 9.7–33.2% of the total warming effect. We therefore propose that an assessment of the reduction of atmospheric warming effects by a mangrove ecosystem should consider both soil greenhouse gas emissions and plant CO2 sequestration.

Details

Title
Soil greenhouse gas emissions reduce the contribution of mangrove plants to the atmospheric cooling effect
Author
Chen, Guangcheng 1 ; Chen, Bin 1 ; Yu, Dan 2 ; Tam, Nora F Y 3 ; Ye, Yong 2 ; Chen, Shunyang 1 

 Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian, 361005, People’s Republic of China 
 Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China 
 Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, People’s Republic of China 
Publication year
2016
Publication date
Dec 2016
Publisher
IOP Publishing
e-ISSN
17489326
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2549328172
Copyright
© 2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.