Abstract

The retinal pigmented epithelium (RPE) is a monolayer of multifunctional cells located at the back of the eye. High membrane turnover and polarization, including formation of actin-based apical microvilli, are essential for RPE function and retinal health. Herein, we demonstrate an important role for βA3/A1-crystallin in RPE. βA3/A1-crystallin deficiency leads to clathrin-mediated epidermal growth factor receptor (EGFR) endocytosis abnormalities and actin network disruption at the apical side that result in RPE polarity disruption and degeneration. We found that βA3/A1-crystallin binds to phosphatidylinositol transfer protein (PITPβ) and that βA3/A1-crystallin deficiency diminishes phosphatidylinositol 4,5-biphosphate (PI(4,5)P2), thus probably decreasing ezrin phosphorylation, EGFR activation, internalization, and degradation. We propose that βA3/A1-crystallin acquired its RPE function before evolving as a structural element in the lens, and that in the RPE, it modulates the PI(4,5)P2 pool through PITPβ/PLC signaling axis, coordinates EGFR activation, regulates ezrin phosphorylation and ultimately the cell polarity.

Shang et al. utilize a conditional Cryba1 knockout mouse model to demonstrate a key role for βA3/A1-crystallin in retinal pigmented epithelium. As a result of βA3/A1-crystallin deficiency, the authors report EGFR endocytosis defects and actin network disruption which leads to polarity disruption and degeneration through PITP β/PLC signaling.

Details

Title
βA3/A1-crystallin regulates apical polarity and EGFR endocytosis in retinal pigmented epithelial cells
Author
Shang Peng 1 ; Stepicheva Nadezda 1 ; Teel, Kenneth 2 ; McCauley, Austin 2 ; Fitting, Christopher Scott 1 ; Hose, Stacey 1 ; Grebe, Rhonda 3 ; Yazdankhah Meysam 1 ; Ghosh Sayan 1 ; Liu, Haitao 1 ; Strizhakova Anastasia 1   VIAFID ORCID Logo  ; Weiss, Joseph 1 ; Bhutto, Imran A 3 ; Lutty, Gerard A 3 ; Jayagopal Ashwath 4 ; Jiang, Qian 3   VIAFID ORCID Logo  ; José-Alain, Sahel 5   VIAFID ORCID Logo  ; Samuel, Zigler J, Jr 3 ; Handa, James T 3 ; Sergeev, Yuri 6   VIAFID ORCID Logo  ; Rajala, Raju V, S 2 ; Watkins, Simon 7   VIAFID ORCID Logo  ; Sinha Debasish 8 

 University of Pittsburgh School of Medicine, Department of Ophthalmology, Pittsburgh, USA (GRID:grid.21925.3d) (ISNI:0000 0004 1936 9000) 
 Dean McGee Eye Institute, University of Oklahoma Health Science Center, Oklahoma City, USA (GRID:grid.266902.9) (ISNI:0000 0001 2179 3618) 
 Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311) 
 Kodiak Sciences, Palo Alto, USA (GRID:grid.21107.35) 
 University of Pittsburgh School of Medicine, Department of Ophthalmology, Pittsburgh, USA (GRID:grid.21925.3d) (ISNI:0000 0004 1936 9000); Institut de la Vision, INSERM, CNRS, Sorbonne Université, Paris, France (GRID:grid.21925.3d) 
 National Eye Institute, National Institutes of Health, Bethesda, USA (GRID:grid.280030.9) (ISNI:0000 0001 2150 6316) 
 University of Pittsburgh School of Medicine, Department of Cell Biology and Center for Biologic Imaging, Pittsburgh, USA (GRID:grid.21925.3d) (ISNI:0000 0004 1936 9000) 
 University of Pittsburgh School of Medicine, Department of Ophthalmology, Pittsburgh, USA (GRID:grid.21925.3d) (ISNI:0000 0004 1936 9000); Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311); University of Pittsburgh School of Medicine, Department of Cell Biology and Center for Biologic Imaging, Pittsburgh, USA (GRID:grid.21925.3d) (ISNI:0000 0004 1936 9000) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
23993642
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2549478140
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.