Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Residence time distribution (RTD) curves play an essential role in the hydraulic characterization of reactors. Current approaches for obtaining RTD curves in laboratory-scale reactors are time-consuming and subject to large errors. Thus, automated systems to obtain RTD curves in laboratory-scale reactors are of great interest for reducing experimental errors due to human interaction, minimizing experimentation costs, and continuously obtaining experimental data. An automated system for obtaining RTD curves in laboratory-scale reactors was designed, built, and tested in this work. During the tests conducted in a cylindrical upflow anaerobic sludge blanket (UASB) reactor, the system worked properly using the stimulus–response pulse technique with sodium chloride as a tracer. Four main factors were found to affect the representativeness of the RTD curves: flow stabilization time, test water conductivity, temperature, and surface tension. A discussion on these factors and the corresponding solutions is presented. The RTD curves of the UASB reactor are left-skewed with a typical tank reactor’s flow shape with channeling and dead zones. A transitory flow behavior was evidenced in the reactor, which indicates the influence of internal turbulent flow structures. The system proposed herein is expected to help study the hydraulics of reactors using laboratory-scale models more efficiently.

Details

Title
Development of an Automated Tracer Testing System for UASB Laboratory-Scale Reactors
Author
Cisneros, Juan F 1   VIAFID ORCID Logo  ; Pelaez-Samaniego, Manuel Raul 2   VIAFID ORCID Logo  ; Pinos, Verónica 3   VIAFID ORCID Logo  ; Nopens, Ingmar 4 ; Alvarado, Andrés 5   VIAFID ORCID Logo 

 Departamento de Química Aplicada y Sistemas de Producción, Universidad de Cuenca, Cuenca 010203, Ecuador; [email protected]; Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Cuenca 010203, Ecuador; [email protected] (V.P.); [email protected] (A.A.); PROMAS, Universidad de Cuenca, Cuenca 010203, Ecuador; Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca 010203, Ecuador 
 Departamento de Química Aplicada y Sistemas de Producción, Universidad de Cuenca, Cuenca 010203, Ecuador; [email protected]; Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca 010203, Ecuador 
 Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Cuenca 010203, Ecuador; [email protected] (V.P.); [email protected] (A.A.); Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca 010203, Ecuador 
 BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, B-9000 Ghent, Belgium; [email protected] 
 Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Cuenca 010203, Ecuador; [email protected] (V.P.); [email protected] (A.A.); Facultad de Ingeniería, Universidad de Cuenca, Cuenca 010203, Ecuador 
First page
1821
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2549706654
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.