Abstract

The formation of large-scale brain networks, and their continual refinement, represent crucial developmental processes that can drive individual differences in cognition and which are associated with multiple neurodevelopmental conditions. But how does this organization arise, and what mechanisms drive diversity in organization? We use generative network modeling to provide a computational framework for understanding neurodevelopmental diversity. Within this framework macroscopic brain organization, complete with spatial embedding of its organization, is an emergent property of a generative wiring equation that optimizes its connectivity by renegotiating its biological costs and topological values continuously over time. The rules that govern these iterative wiring properties are controlled by a set of tightly framed parameters, with subtle differences in these parameters steering network growth towards different neurodiverse outcomes. Regional expression of genes associated with the simulations converge on biological processes and cellular components predominantly involved in synaptic signaling, neuronal projection, catabolic intracellular processes and protein transport. Together, this provides a unifying computational framework for conceptualizing the mechanisms and diversity in neurodevelopment, capable of integrating different levels of analysis—from genes to cognition.

The formation of large-scale brain networks represents crucial developmental processes that can drive individual differences in cognition and which are associated with multiple neurodevelopmental conditions. Here, the authors use generative network modelling to provide a computational framework for understanding neurodevelopmental diversity.

Details

Title
A generative network model of neurodevelopmental diversity in structural brain organization
Author
Akarca Danyal 1   VIAFID ORCID Logo  ; Vértes, Petra E 2 ; Bullmore, Edward T 3   VIAFID ORCID Logo  ; Baker, Kate 1 ; Gathercole, Susan E 1 ; Holmes, Joni 1 ; Kievit, Rogier A 1 ; Manly, Tom 1 ; Bathelt, Joe 1 ; Bennett, Marc 1 ; Bignardi Giacomo 1 ; Bishop, Sarah 1 ; Bottacin Erica 1 ; Bridge, Lara 1 ; Brkic Diandra 1 ; Bryant, Annie 1 ; Butterfield, Sally 1 ; Byrne, Elizabeth M 1 ; Crickmore Gemma 1 ; Dalmaijer, Edwin S 1 ; Daly Fánchea 1 ; Emery, Tina 1 ; Forde, Laura 1 ; Franckel Grace 1 ; Fuhrmann Delia 1 ; Gadie, Andrew 1 ; Gharooni Sara 1 ; Guy, Jacalyn 1 ; Hawkins, Erin 1 ; Jaroslawska Agnieszka 1 ; Joeghan Sara 1 ; Johnson, Amy 1 ; Jones, Jonathan 1 ; Mareva Silvana 1 ; Ng-Cordell, Elise 1 ; O’Brien Sinead 1 ; O’Leary Cliodhna 1 ; Rennie, Joseph P 1 ; Simpson-Kent, Ivan 1 ; Siugzdaite Roma 1 ; Smith, Tess A 1 ; Uh Stephani 1 ; Vedechkina, Maria 1 ; Woolgar Francesca 1 ; Zdorovtsova Natalia 1 ; Zhang Mengya 1 ; Astle, Duncan E 1 

 University of Cambridge, MRC Cognition and Brain Sciences Unit, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000000121885934) 
 University of Cambridge, Department of Psychiatry, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000000121885934); The Alan Turing Institute, London, UK (GRID:grid.499548.d) (ISNI:0000 0004 5903 3632) 
 University of Cambridge, Department of Psychiatry, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000000121885934); University of Cambridge, Department of Clinical Neurosciences, Wolfson Brain Imaging Centre, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000000121885934) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2549835189
Copyright
© Crown 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.