Full text

Turn on search term navigation

Copyright © 2021 Gianluca Gatti. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

This paper presents the fundamental static and dynamic characteristics of a suspension system consisting of four linear springs arranged in an X-shaped configuration to achieve geometric nonlinearity. The particular interest is towards the design of a softening spring geometry realizing a quasi-zero stiffness behaviour at large deflections, and the influence of the system parameters is investigated. The static performance is studied in terms of the force-deflection curve and the dynamic performance in terms of the frequency response curve. The softening-hardening behaviour of the suspension leads to a frequency response which bends to the lower frequencies reaching a well-defined minimum. It is found that both the static and dynamic behaviours may be described in terms of a single parameter, and a simple closed-form expression is determined which links the damping in the system to the excitation amplitude to achieve the lowest possible resonance frequency.

Details

Title
Effect of Parameters on the Design of a Suspension System with Four Oblique Springs
Author
Gatti, Gianluca 1   VIAFID ORCID Logo 

 Department of Mechanical, Energy and Management Engineering, University of Calabria, Rende 87036, Italy 
Editor
Jean-Jacques Sinou
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
10709622
e-ISSN
18759203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550177081
Copyright
Copyright © 2021 Gianluca Gatti. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/