Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Sugar intake abuse is directly related with the increase of metabolic diseases such as type 2 diabetes, obesity, and insulin resistance. Along this line, the development of new beverages using alternative sweeteners could help with combatting the pathophysiological disorders associated to the consumption of sugar. To provide evidence on this issue, in the present work, the bioavailability of anthocyanins was evaluated after the acute ingestion of a new maqui-citrus-based functional beverage rich in polyphenols, and supplemented with a range of sweeteners including sucrose (natural high caloric), stevia (natural non-caloric), and sucralose (artificial non-caloric), as an approach that would allow reducing the intake of sugars while providing bioactive phenolic compounds (anthocyanins). This approach allowed the evaluation of the maximum absorption and the diversity of metabolites excreted through urine. The beverages created were ingested by volunteers (n = 20) and the resulting anthocyanin metabolites in their urine were analyzed by UHPLC-ESI-MS/MS. A total of 29 degradation metabolites were detected: Caffeic acid, catechol, 3,4-dihidroxifenilacetic acid, hippuric acid, trans-ferulic acid, 2,4,6-trihydroxybenzaldehyde, trans-isoferulic acid, and vanillic acid derivatives, where peak concentrations were attained at 3.5 h after beverage intake. Sucralose was the sweetener that provided a higher bioavailability for most compounds, followed by stevia. Sucrose did not provide a remarkably higher bioavailability of any compounds in comparison with sucralose or stevia. The results propose two sweetener alternatives (sucralose and stevia) to sucrose, an overused high calorie sweetener that promotes some metabolic diseases.

Details

Title
Anthocyanin Metabolites in Human Urine after the Intake of New Functional Beverages
Author
Agulló, Vicente 1 ; Villaño, Débora 2 ; García-Viguera, Cristina 1   VIAFID ORCID Logo  ; Domínguez-Perles, Raúl 1   VIAFID ORCID Logo 

 Phytochemistry and Healthy Foods Lab. Group of Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, (CEBAS-CSIC), University Campus Espinardo 25, 30100 Murcia, Spain 
 Universidad Católica San Antonio de Murcia (UCAM), Department of Pharmacy, Faculty of Health Sciences, Campus de los Jerónimos, Guadalupe, 30107 Murcia, Spain 
First page
371
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550214407
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.