Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Computational fluid dynamics modeling at Reynolds numbers ranging from 10 to 100 was used to characterize the performance of a new type of micromixer employing a serpentine channel with a grooved surface. The new topology exploits the overlap between the typical Dean flows present in curved channels due to the centrifugal forces experienced by the fluids, and the helical flows induced by slanted groove-ridge patterns with respect to the direction of the flow. The resulting flows are complex, with multiple vortices and saddle points, leading to enhanced mixing across the section of the channel. The optimization of the mixers with respect to the inner radius of curvature (Rin) of the serpentine channel identifies the designs in which the mixing index quality is both high (M > 0.95) and independent of the Reynolds number across all the values investigated.

Details

Title
Mixing Optimization in Grooved Serpentine Microchannels
Author
Rhoades, Tyler 1 ; Kothapalli, Chandrasekhar R 2   VIAFID ORCID Logo  ; Fodor, Petru S 1 

 Department of Physics, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44236, USA; [email protected] 
 Department of Chemical and Biomedical Engineering, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44236, USA; [email protected] 
First page
61
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550214860
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.