Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

New Delhi Metallo-β-lactamase-1 (NDM-1) is the most prevalent type of metallo-β-lactamase, able to hydrolyze almost all antibiotics of the β-lactam group, leading to multidrug-resistant bacteria. To date, there are no clinically relevant inhibitors to fight NDM-1. The use of dromedary polyclonal antibody inhibitors against NDM-1 represents a promising new class of molecules with inhibitory activity. In the current study, immunoreactivities of dromedary Immunoglobulin G (IgG) isotypes containing heavy-chain and conventional antibodies were tested after successful immunization of dromedary using increasing amounts of the recombinant NDM-1 enzyme. Inhibition kinetic assays, performed using a spectrophotometric method with nitrocefin as a reporter substrate, demonstrated that IgG1, IgG2, and IgG3 were able to inhibit not only the hydrolytic activity of NDM-1 but also Verona integron-encoded metallo-β-lactamase (VIM-1) (subclass B1) and L1 metallo-β-lactamase (L1) (subclass B3) with inhibitory concentration (IC50) values ranging from 100 to 0.04 μM. Investigations on the ability of IgG subclasses to reduce the growth of recombinant Escherichia coli BL21(DE3)/codon plus cells containing the recombinant plasmid expressing NDM-1, L1, or VIM-1 showed that the addition of IgGs (4 and 8 mg/L) to the cell culture was unable to restore the susceptibility of carbapenems. Interestingly, IgGs were able to interact with NDM-1, L1, and VIM-1 when tested on the periplasm extract of each cultured strain. The inhibitory concentration was in the micromolar range for all β-lactams tested. A visualization of the 3D structural basis using the three enzyme Protein Data Bank (PDB) files supports preliminarily the recorded inhibition of the three MBLs.

Details

Title
Inhibitory Potential of Polyclonal Camel Antibodies against New Delhi Metallo-β-lactamase-1 (NDM-1)
Author
Rahma Ben Abderrazek 1 ; Sarra Chammam 1 ; Ayoub Ksouri 1 ; Perilli, Mariagrazia 2 ; Dhaouadi, Sayda 1 ; Mdini, Ines 1 ; Benlasfar, Zakaria 1 ; Amicosante, Gianfranco 2 ; Bouhaouala-Zahar, Balkiss 3 ; Piccirilli, Alessandra 2 

 Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur Tunis, Université Tunis El Manar, 13 Place Pasteur, BP-74, 1002 Tunis, Tunisie; [email protected] (S.C.); [email protected] (A.K.); [email protected] (S.D.); [email protected] (I.M.); [email protected] (Z.B.); [email protected] (B.B.-Z.) 
 Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università degli Studi dell’Aquila, Via Vetoio, I-67100 L’Aquila, Italy; [email protected] (M.P.); [email protected] (G.A.); [email protected] (A.P.) 
 Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur Tunis, Université Tunis El Manar, 13 Place Pasteur, BP-74, 1002 Tunis, Tunisie; [email protected] (S.C.); [email protected] (A.K.); [email protected] (S.D.); [email protected] (I.M.); [email protected] (Z.B.); [email protected] (B.B.-Z.); Faculté de Médecine de Tunis, Université Tunis El Manar, 15 Rue Djabel Lakhdar, 1007 Tunis, Tunisie 
First page
4453
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550217473
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.