Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Two algebraic approaches based on a discrete variable representation are introduced and applied to describe the Stark effect in the non-relativistic Hydrogen atom. One approach consists of considering an algebraic representation of a cutoff 3D harmonic oscillator where the matrix representation of the operators r2 and p2 are diagonalized to define useful bases to obtain the matrix representation of the Hamiltonian in a simple form in terms of diagonal matrices. The second approach is based on the U(4) dynamical algebra which consists of the addition of a scalar boson to the 3D harmonic oscillator space keeping constant the total number of bosons. This allows the kets associated with the different subgroup chains to be linked to energy, coordinate and momentum representations, whose involved branching rules define the discrete variable representation. Both methods, although originating from the harmonic oscillator basis, provide different convergence tests due to the fact that the associated discrete bases turn out to be different. These approaches provide powerful tools to obtain the matrix representation of 3D general Hamiltonians in a simple form. In particular, the Hydrogen atom interacting with a static electric field is described. To accomplish this task, the diagonalization of the exact matrix representation of the Hamiltonian is carried out. Particular attention is paid to the subspaces associated with the quantum numbers n=2,3 with m=0.

Details

Title
Algebraic DVR Approaches Applied to Describe the Stark Effect
Author
Bermúdez-Montaña, Marisol 1   VIAFID ORCID Logo  ; Rodríguez-Arcos, Marisol 2   VIAFID ORCID Logo  ; Lemus, Renato 2 ; Arias, José M 3 ; Gómez-Camacho, Joaquín 4 ; Orgaz, Emilio 5 

 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, CDMX 04510, Mexico; [email protected] (M.B.-M.); [email protected] (M.R.-A.); Facultad de Química, Universidad Nacional Autónoma de México, Apartado Postal 70-543, CDMX 04510, Mexico; [email protected] 
 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, CDMX 04510, Mexico; [email protected] (M.B.-M.); [email protected] (M.R.-A.) 
 Departamento de Física Atómica, Molecular y Nuclear, Facultad de Física, Universidad de Sevilla, Apartado 1065, 41080 Sevilla, Spain; [email protected] (J.M.A.); [email protected] (J.G.-C.); Instituto Carlos I (iCI) de Física Teórica y Computacional, Universidad de Sevilla, Apartado 1065, 41080 Sevilla, Spain 
 Departamento de Física Atómica, Molecular y Nuclear, Facultad de Física, Universidad de Sevilla, Apartado 1065, 41080 Sevilla, Spain; [email protected] (J.M.A.); [email protected] (J.G.-C.); CN de Aceleradores (U. Sevilla, J. Andalucía, CSIC), 41092 Sevilla, Spain 
 Facultad de Química, Universidad Nacional Autónoma de México, Apartado Postal 70-543, CDMX 04510, Mexico; [email protected] 
First page
1719
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550251552
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.