Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, we investigate various machine learning classifiers used in our Virtual Reality (VR) system for treating acrophobia. The system automatically estimates fear level based on multimodal sensory data and a self-reported emotion assessment. There are two modalities of expressing fear ratings: the 2-choice scale, where 0 represents relaxation and 1 stands for fear; and the 4-choice scale, with the following correspondence: 0—relaxation, 1—low fear, 2—medium fear and 3—high fear. A set of features was extracted from the sensory signals using various metrics that quantify brain (electroencephalogram—EEG) and physiological linear and non-linear dynamics (Heart Rate—HR and Galvanic Skin Response—GSR). The novelty consists in the automatic adaptation of exposure scenario according to the subject’s affective state. We acquired data from acrophobic subjects who had undergone an in vivo pre-therapy exposure session, followed by a Virtual Reality therapy and an in vivo evaluation procedure. Various machine and deep learning classifiers were implemented and tested, with and without feature selection, in both a user-dependent and user-independent fashion. The results showed a very high cross-validation accuracy on the training set and good test accuracies, ranging from 42.5% to 89.5%. The most important features of fear level classification were GSR, HR and the values of the EEG in the beta frequency range. For determining the next exposure scenario, a dominant role was played by the target fear level, a parameter computed by taking into account the patient’s estimated fear level.

Details

Title
An Investigation of Various Machine and Deep Learning Techniques Applied in Automatic Fear Level Detection and Acrophobia Virtual Therapy
Author
Bălan, Oana 1   VIAFID ORCID Logo  ; Moise, Gabriela 2   VIAFID ORCID Logo  ; Moldoveanu, Alin 1   VIAFID ORCID Logo  ; Leordeanu, Marius 1 ; Moldoveanu, Florica 1   VIAFID ORCID Logo 

 Faculty of Automatic Control and Computers, University POLITEHNICA of Bucharest, Bucharest 060042, Romania; [email protected] (A.M.); [email protected] (M.L.); [email protected] (F.M.) 
 Department of Computer Science, Information Technology, Mathematics and Physics, Petroleum-Gas University of Ploiesti, Ploiesti 100680, Romania; [email protected] 
First page
496
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550265269
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.