Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To improve the standard point positioning (SPP) accuracy of integrated BDS (BeiDou Navigation Satellite System)/GPS (Global Positioning System) at the receiver end, a novel approach based on Long Short-Term Memory (LSTM) error correction recurrent neural network is proposed and implemented to reduce the error caused by multiple sources. On the basis of the weighted least square (WLS) method and Kalman filter, the proposed LSTM-based algorithms, named WLS–LSTM and Kalman–LSTM error correction methods, are used to predict the positioning error of the next epoch, and the prediction result is used to correct the next epoch error. Based on the measured data, the results of the weighted least square method, the Kalman filter method and the LSTM error correction method were compared and analyzed. The dynamic test was also conducted, and the experimental results in dynamic scenarios were analyzed. From the experimental results, the three-dimensional point positioning error of Kalman–LSTM error correction method is 1.038 m, while the error of weighted least square method, Kalman filter and WLS–LSTM error correction method are 3.498, 3.406 and 1.782 m, respectively. The positioning error is 3.7399 m and the corrected positioning error is 0.7493 m in a dynamic scene. The results show that the LSTM-based error correction method can improve the standard point positioning accuracy of integrated BDS/GPS significantly.

Details

Title
A Novel Error Correction Approach to Improve Standard Point Positioning of Integrated BDS/GPS
Author
Du, Luyao 1   VIAFID ORCID Logo  ; Ji, Jing 2   VIAFID ORCID Logo  ; Pei, Zhonghui 2 ; Chen, Wei 1 

 School of automation, Wuhan University of Technology, Wuhan 430070, China; [email protected] 
 School of information engineering, Wuhan University of Technology, Wuhan 430070, China; [email protected] (J.J.); [email protected] (Z.P.) 
First page
6162
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550277459
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.