Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In vitro experiments have demonstrated that camel foregut-fluid has the capacity to metabolize indospicine, a natural toxin which causes hepatotoxicosis, but such metabolism is in competition with absorption and outflow of indospicine from the different segments of the digestive system. Six young camels were fed Indigofera spicata (337 µg indospicine/kg BW/day) for 32 days, at which time three camels were euthanized. The remaining camels were monitored for a further 100 days after cessation of this indospicine diet. In a retrospective investigation, relative levels of indospicine foregut-metabolism products were examined by UHPLC-MS/MS in plasma, collected during both accumulation and depletion stages of this experiment. The metabolite 2-aminopimelamic acid could be detected at low levels in almost all plasma samples, whereas 2-aminopimelic acid could not be detected. In the euthanized camels, 2-aminopimelamic acid could be found in all tissues except muscle, whereas 2-aminopimelic acid was only found in the kidney, pancreas, and liver tissues. The clearance rate for these metabolites was considerably greater than for indospicine, which was still present in plasma of the remaining camels 100 days after cessation of Indigofera consumption.

Details

Title
Bioaccumulation and Distribution of Indospicine and Its Foregut Metabolites in Camels Fed Indigofera spicata
Author
Netzel, Gabriele 1 ; Tan, Eddie T T 2 ; Yin, Mukan 1 ; Giles, Cindy 3 ; Yong, Ken W L 3 ; Rafat Al Jassim 1 ; Fletcher, Mary T 1   VIAFID ORCID Logo 

 Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia 
 Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia; Alliance of Research and Innovation for Food (ARIF), Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kuala Pilah Campus, Negeri Sembilan 72000, Malaysia 
 Department of Agriculture and Fisheries, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia 
First page
169
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20726651
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550277486
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.