Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Climate change is increasing the vulnerability of Mediterranean coniferous plantations. Here, we integrate a Landsat time series with a physically-based distributed hydrological model (Watershed Integrated Management in Mediterranean Environments—WiMMed) to examine spatially-explicit relationships between the mortality processes of Pinus pinaster plantations and the hydrological regime, using different spectral indices of vegetation and machine learning algorithms. The Normalized Burn Ratio (NBR) and Moisture Stress Index (MSI) show the highest correlations with defoliation rates. Random Forest was the most accurate model (R2 = 0.79; RMSE = 0.059), showing a high model performance and prediction. Support vector machines and neural networks also demonstrated a high performance (R2 > 0.7). The main hydrological variables selected by the model to explain defoliation were potential evapotranspiration, winter precipitation and maximum summer temperature (lower Out-of-bag error). These results show the importance of hydrological variables involved in evaporation processes, and on the change in the spatial distribution of seasonal rainfall upon the defoliation processes of P. pinaster. These results underpin the importance of integrating temporal remote sensing data and hydrological models to analyze the drivers of forest defoliation and mortality processes in the Mediterranean climate.

Details

Title
Integration of a Landsat Time-Series of NBR and Hydrological Modeling to Assess Pinus pinaster Aiton. Forest Defoliation in South-Eastern Spain
Author
Antonio Jesús Ariza Salamanca 1 ; Navarro-Cerrillo, Rafael María 1   VIAFID ORCID Logo  ; Bonet-García, Francisco J 2 ; Pérez-Palazón, Ma José 3 ; Polo, María J 3 

 Department of Forestry Engineering, Laboratory of Silviculture, dendrochronology and climate change. DendrodatLab-ERSAF, Andalusian Institute for Earth System Research, University of Cordoba, Campus de Rabanales, Crta. IV, km. 396, E-14071 Córdoba, Spain; [email protected] 
 Department of Ecology, University of Cordoba, Campus de Rabanales, Crta. IV, km. 396, E-14071 Córdoba, Spain; [email protected] 
 Department of Hydraulic Engineering, Laboratory of River Dynamics and Hydrology, Andalusian Institute for Earth System Research, University of Cordoba, Campus de Rabanales, Crta. IV, km. 396, E-14071 Córdoba, Spain[email protected] (M.J.P.) 
First page
2291
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550289469
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.