Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Qinghai-Tibetan plateau plays an important role in climate change with its unique characteristics, and the surface emissivity is an important parameter to describe the surface characteristics. It is also very important for the accurate retrieval of surface and atmospheric parameters. Different types of surface features have their own radiation characteristics due to their differences in structure, water content and roughness. In this study, the microwave land surface emissivity (10.65, 18.7, 23.8, 36.5 and 89 GHz) of the Qinghai-Tibetan Plateau was calculated using the simplified microwave radiation transmission equation under clear atmospheric conditions based on Level 1 brightness temperatures from the Microwave Radiation Imager onboard the FY-3B meteorological satellite (FY-3B/MWRI) and the National Centers for Environmental Prediction Final (NCEP-FNL) Global Operational Analysis dataset. Furthermore, according to the IGBP (International Geosphere-Biosphere Program) classified data, the spectrum and spatial distribution characteristics of microwave surface emittance in Qinghai-Tibetan plateau were further analyzed. The results show that almost all 16 types of emissivity from IGBP at dual-polarization (vertical and horizontal) increase with the increase of frequency. The spatial distribution of the retrieving results is in line with the changes of surface cover types on the Qinghai-Tibetan plateau, showing the distribution characteristics of large polarization difference of surface emissivity in the northwest and small polarization difference in the southeast, and diverse vegetation can be clearly seen in the retrieving results. In addition, the emissivity is closely related to the type of land surface. Since the emissivity of vegetation is higher than that of bare soil, the contribution of bare soil increases and the surface emissivity decreases as the density of vegetation decreases. Finally, the source of retrieval error was analyzed. The errors in calculating the surface emissivity might mainly come from spatiotemporal collocation of reanalysis data with satellite measurements, the quality of these auxiliary datasets and cloud and precipitation pixel discrimination scheme. Further quantitative analysis of these errors is required, and even standard procedures may need to be improved as well to improve the accuracy of the calculation.

Details

Title
Microwave Land Emissivity Calculations over the Qinghai-Tibetan Plateau Using FY-3B/MWRI Measurements
Author
Wu, Ying 1 ; Qian, Bo 1 ; Bao, Yansong 1 ; Petropoulos, George P 2   VIAFID ORCID Logo  ; Liu, Xulin 3 ; Li, Lin 3 

 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China; School of Atmospheric physics, Nanjing University of Information Science and Technology, Nanjing 210044, China 
 School of Mineral Resources Engineering, Technical University of Crete, Kounoupidiana Campus, Crete 73100, Greece; Department of Soil & Water Resources, Institute of Industrial & Forage Crops, Hellenic Agricultural Organization (HAO) “Demeter”, Larisa 41335, Greece 
 Beijing Meteorological Observation Center, Beijing Meteorological Bureau, Beijing 100089, China 
First page
2206
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550291706
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.