Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper proposes a novel incremental training mode to address the problem of Deep Reinforcement Learning (DRL) based path planning for a mobile robot. Firstly, we evaluate the related graphic search algorithms and Reinforcement Learning (RL) algorithms in a lightweight 2D environment. Then, we design the algorithm based on DRL, including observation states, reward function, network structure as well as parameters optimization, in a 2D environment to circumvent the time-consuming works for a 3D environment. We transfer the designed algorithm to a simple 3D environment for retraining to obtain the converged network parameters, including the weights and biases of deep neural network (DNN), etc. Using these parameters as initial values, we continue to train the model in a complex 3D environment. To improve the generalization of the model in different scenes, we propose to combine the DRL algorithm Twin Delayed Deep Deterministic policy gradients (TD3) with the traditional global path planning algorithm Probabilistic Roadmap (PRM) as a novel path planner (PRM+TD3). Experimental results show that the incremental training mode can notably improve the development efficiency. Moreover, the PRM+TD3 path planner can effectively improve the generalization of the model.

Details

Title
Deep Reinforcement Learning for Indoor Mobile Robot Path Planning
Author
Ye, Weijie; Li, Zhongjuan
First page
5493
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550319688
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.