Full text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Unmanned aerial vehicle (UAV) autonomous tracking and landing is playing an increasingly important role in military and civil applications. In particular, machine learning has been successfully introduced to robotics-related tasks. A novel UAV autonomous tracking and landing approach based on a deep reinforcement learning strategy is presented in this paper, with the aim of dealing with the UAV motion control problem in an unpredictable and harsh environment. Instead of building a prior model and inferring the landing actions based on heuristic rules, a model-free method based on a partially observable Markov decision process (POMDP) is proposed. In the POMDP model, the UAV automatically learns the landing maneuver by an end-to-end neural network, which combines the Deep Deterministic Policy Gradients (DDPG) algorithm and heuristic rules. A Modular Open Robots Simulation Engine (MORSE)-based reinforcement learning framework is designed and validated with a continuous UAV tracking and landing task on a randomly moving platform in high sensor noise and intermittent measurements. The simulation results show that when the moving platform is moving in different trajectories, the average landing success rate of the proposed algorithm is about 10% higher than that of the Proportional-Integral-Derivative (PID) method. As an indirect result, a state-of-the-art deep reinforcement learning-based UAV control method is validated, where the UAV can learn the optimal strategy of a continuously autonomous landing and perform properly in a simulation environment.

Details

Title
UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy
Author
Xie, Jingyi 1 ; Peng, Xiaodong 1 ; Wang, Haijiao 2 ; Niu, Wenlong 1 ; Zheng, Xiao 1 

 Key Laboratory of Electronics and Information Technology for Space System, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China; [email protected] (J.X.); [email protected] (W.N.); [email protected] (X.Z.); University of Chinese Academy of Sciences, Beijing 100049, China 
 Alibaba Damo Academy, Hangzhou 311121, China; [email protected] 
First page
5630
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550345353
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.