Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Macrophytes are important structural attributes of freshwater ponds and wetlands, affecting zooplankton community composition. One of the best-known macrophytes in the world is Eichhornia crassipes, which, due to its high reproductive rate, can quickly occupy large areas of aquatic environments. However, there have been few assessments of the direct effect of this macrophyte, in the absence of predators, for tropical zooplankton communities. The aim of this study was to evaluate the influence of E. crassipes on microcrustacean community structure using species and functional diversity, the latter providing an important tool to evaluate the response to changes in resource availability along an environment gradient. We also evaluated which functional traits were favored when the structural niche offered by submerged parts of the macrophytes was present. We conducted a 30 day mesocosm experiment (117 m3) with and without the presence of floating macrophytes (Eichhornia crassipes) inserted along one edge of the mesocosms. Treatment effects on microcrustacean density and community structure using taxonomic and functional classification approaches were assessed. There was a positive association between macrophyte presence and microcrustacean diversity for both diversity types, showing that the presence of macrophytes enhanced the niche availability for the microcrustacean community, likely through changes to resource diversity through habitat structure provision. In the presence of macrophytes, the abundance of species with the following feeding traits increased: burrowing, benthic habitat preference, and herbivore–detritivore and omnivore–carnivore trophic groups. Results showed that the species capable of using the niche offered by submerged macrophyte structures had benthic traits, enabling their co-existence with species possessing primarily pelagic traits. Using a functional approach, our study demonstrated that Eichhornia crassipes can structure microcrustacean communities and promote diversity, likely via increased habitat diversity, which enables the co-existence of species possessing different adaptations to acquiring resources available in the environment.

Details

Title
Influence of Eichhornia crassipes (Mart) Solms on a Tropical Microcrustacean Community Based on Taxonomic and Functional Trait Diversity
Author
Stephan, Lígia R 1 ; Beisner, Beatrix E 2 ; Oliveira, Samuel G M 3 ; Maria Stela M Castilho-Noll 1 

 Zoology and Botany Department, Biosciences, Languages, and Exact Sciences Institute (IBILCE), São José do Rio Preto Campus, São Paulo State University Júlio de Mesquita Filho (UNESP), São José do Rio Preto-SP, 15054-000, Brazil 
 Department of Biological Sciences, University of Quebec at Montreal, C.P. 8888 Succ.Centre-Ville, Montreal, QC H3C 3P8, Canada 
 Unesp’s Aquaculture Center (CAUNESP), Jaboticabal Campus, São Paulo State University Júlio de Mesquita Filho (UNESP), Jaboticabal-SP, 14884-900, Brazil 
First page
2423
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550464827
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.