It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A global warming of 2 °C relative to pre-industrial climate has been considered as a threshold which society should endeavor to remain below, in order to limit the dangerous effects of anthropogenic climate change. The possible changes in regional climate under this target level of global warming have so far not been investigated in detail. Using an ensemble of 15 regional climate simulations downscaling six transient global climate simulations, we identify the respective time periods corresponding to 2 °C global warming, describe the range of projected changes for the European climate for this level of global warming, and investigate the uncertainty across the multi-model ensemble. Robust changes in mean and extreme temperature, precipitation, winds and surface energy budgets are found based on the ensemble of simulations. The results indicate that most of Europe will experience higher warming than the global average. They also reveal strong distributional patterns across Europe, which will be important in subsequent impact assessments and adaptation responses in different countries and regions. For instance, a North–South (West–East) warming gradient is found for summer (winter) along with a general increase in heavy precipitation and summer extreme temperatures. Tying the ensemble analysis to time periods with a prescribed global temperature change rather than fixed time periods allows for the identification of more robust regional patterns of temperature changes due to removal of some of the uncertainty related to the global models’ climate sensitivity.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Laboratoire des Sciences du Climat et de l’Environnement (CEA/CNRS/UVSQ), Institut Pierre-Simon Laplace, Orme des Merisiers, Gif sur Yvette, France
2 Wegener Center for Climate and Global Change, University of Graz, Austria
3 Uni Research, Bjerknes Center for Climate Research, Bergen, Norway
4 Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
5 Paul Watkiss Associates, Oxford, UK
6 Norwegian Meteorological Institute, Oslo, Norway
7 Climate Service Center (CSC), Helmholtz-Zentrum Geesthacht, Fischertwiete 1, D-20095 Hamburg, Germany; Max Planck Institute for Meteorology (MPIM), Bundesstr. 53, D-20146 Hamburg, Germany
8 Climate Service Center (CSC), Helmholtz-Zentrum Geesthacht, Fischertwiete 1, D-20095 Hamburg, Germany