It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The 3-GeV rapid cycling synchrotron (RCS) of the Japan Proton Accelerator Research Complex was commissioned in October 2007. Via the initial beam tuning and a series of underlying beam studies with low-intensity beams, since December 2009, we have intermittently been performing beam tuning experiments with higher-intensity beams including the injection painting technique. By optimizing the injection painting parameters, we have successfully achieved a 420 kW-equivalent output intensity at a low-level intensity loss of less than 1%. Also the corresponding numerical simulation well reproduced the observed painting parameter dependence on the beam loss, and captured a characteristic behavior of the high-intensity beam in the injection painting process. In this paper, we present the experimental results obtained in the course of the RCS beam power ramp-up, especially on the beam loss reduction achieved by employing the injection painting, together with the numerical simulation results.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer