It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Based on a quasioptical approach and direct particle-in-cell simulations, we study dynamics of oversized relativistic surface-wave oscillators (SWOs) of the Cherenkov type with 2D periodical corrugated structures of cylindrical geometry. Such corrugation allows significant rarefication of the spectrum of modes with different azimuthal indices. As a result, selective excitation of a mode with a given azimuthal index is possible. Azimuthal index of the generated mode depends on the voltage rise time. For short (nanosecond scale) rise time, generation of an azimuthally symmetric mode can be realized. For longer (hundreds nanoseconds to microseconds) rise time, the modes with high azimuthal indexes would be excited. These conclusions are supported by the experiments where Ka-band SWOs with 2D corrugated structures were realized based on the300keV/100A/4μsthermionic accelerator SATURN. For an oversize factor of 16, stable narrow-band generation with output power of 1.5–2 MW was obtained at the frequency of 32.5 GHz corresponding to the mode with an azimuthal index ofm=3. The project of Ka-band subgigawatt power SWOs operating at the azimuthally symmetric mode based on500keV/4kA/20nshigh current explosive-emission accelerator SINUS-6 is under development.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer