It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In-vacuum undulators have been widely operated in many synchrotron radiation facilities across the world. They usually are required to be operated at a smaller magnet gap than those of other undulators. Thus, operating challenges including impedance effects on the stored electron beam are introduced by these devices. In this paper, we report the efforts in solving the problem of coupled-bunch instabilities caused by an in-vacuum undulator in the SPEAR3 storage ring. Using beam based measurements, cold rf measurements, and numerical simulations, the source of the beam instabilities is characterized as trapped modes in the vacuum chamber. Using numerical models, we explored several approaches to reduce the strength of the trapped modes and found that ferrite dampers were the most effective and simplest way for mode damping in our SPEAR3 in-vacuum undulator. The results of the first rf cold measurement on an in-vacuum undulator equipped with these ferrite dampers agree well with numerical simulations.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer