It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
An efficient way to enhance laser-driven proton acceleration is by increasing the laser-to-target energy transfer, which can be obtained using nanostructured target surfaces. In this paper, we show that inexpensive and easily producible solid target nanostructuration using ultrasmall nanoparticles having 10 nm in diameter exhibits a nearly twofold maximum proton energy and proton number enhancement. Results are confirmed by particle-in-cell simulations, for several laser pulse lengths. A parameter scan analyzing the effect of the nanoparticle diameter and space gap between the nanospheres shows that the gap has a stronger influence on the enhancement mechanism than the sphere diameter.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer