It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The resistive wall impedance of a vacuum chamber with elliptic cross section is of particular interest for circular particle accelerators as well as for undulators in free electron lasers. By using the electric field of a point charge and of a small dipole moving at arbitrary speed in an elliptical vacuum chamber, expressed in terms of Mathieu functions, in this paper we take into account the finite conductivity of the beam pipe walls by means of the surface impedance, and evaluate the longitudinal and transverse driving and detuning impedances for any beam velocity. We also extend the definition of the Yokoya form factors, valid in the thick wall regime, at any beam energy, and show that, in the ultra-relativistic limit, they coincide with the ones that are found in literature. The method is also extended to the multilayer vacuum chamber case. Under conditions generally satisfied with particle accelerator beam pipes, the classical transmission line theory can be used to modelling the impedance seen by a bunch in a vacuum chamber with several layers as an equivalent circuit with the same number of load impedances, giving, as result, a surface impedance that can be used in combination with the fields of the elliptic geometry to obtain the resistive wall impedance in an elliptical multilayer vacuum chamber. The results are also compared with a more time consuming 3D electromagnetic code and with solutions for known cases of circular and flat beam pipe.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer