It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The Low Energy Relativistic Heavy Ion Collider (RHIC) Electron Cooler (LEReC) is the world’s first electron cooler using rf-accelerated electron bunches. Recently, the cooling of gold ion beams in RHIC by 1.6 and 2.0 MeV electrons was successfully achieved. Along with the velocity spread and alignment of the electron beam, the space-charge force between ions and electrons also plays an important role in the cooling process. In order to investigate the cooling dynamics with bunched electron beams and to provide guidance for the LEReC operation, a simulation code was developed, which includes nonmagnetized cooling, intrabeam scattering, and the space-charge effect. In this paper, we present and discuss the simulation results, showing how various effects influence the cooling process as well as provide experimental benchmarking of the simulations.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer